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Abstract
This paper investigates the global synchronization problem of complex
dynamical networks consisting of a drive network and a response network.
Using the decentralized and variable structure control techniques, a control law
is derived which guarantees the global exponential synchronization of the drive–
response network even with the presence of input nonlinearity. The proposed
controller is applicable to complex networks with general nonlinear dynamical
nodes. Chaotic networks are used as illustrative examples to demonstrate the
effectiveness of the proposed control scheme.

PACS numbers: 89.75.−k, 05.45.Xt, 05.45.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Over the past few decades, the synchronization and control problems of complex dynamical
networks have attracted a great deal of attention from the nonlinear dynamics community
[1–16]. In the literature, the master stability function (MSF) approach [11], investigating
the local stability of the synchronization manifold, has been extensively applied to the
synchronization analysis and the synchronizability problem of complex dynamical networks
[7–13]. And, based on the MSF approach, a control technique called pinning control has
been successfully used to achieve network synchronization [17–21]. It should be noted that,
because of the use of the local linearization method, the results obtained by the MSF approach
are local.

So far, the studies of network synchronization have mostly been limited to within one
network. Thus, a natural and interesting question is: does the synchronization happen between
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two coupled networks? Another question is what control scheme can be applied to this kind of
synchronization problem. These questions deserve investigation for the ubiquitous existence
of the collective dynamics between different complex communities, for example, the interplay
between the prey and predator communities. In [22], the problem of synchronization between
two coupled networks was also addressed by the approach of local stability analysis. In this
paper, the problem of global synchronization of two coupled networks will be investigated.

Composed of many interconnected nodes, a general complex dynamical network can be
seen as a high-dimensional nonlinear system. Therefore, implementing a centralized control
scheme to such a system is difficult and expensive. In this paper, a decentralized control
strategy, which is quite popular in large-scale systems theory [23–25], is used to achieve
global synchronization of two coupled dynamical networks. Comparing with the centralized
control strategy, decentralized control has many advantages for its lower dimensionality and
using only individual node’s information.

On the other hand, the control inputs of practical systems are usually subject to nonlinearity
as a result of physical limitations. It has been shown that the input nonlinearity can cause a
serious degradation of system performance, a reduced rate of response and in a worst-case
scenario even system failure if the controller is not well designed [26]. Therefore, the effects
of input nonlinearity should be taken into account when analyzing and implementing a control
scheme, particularly for complex dynamical networks. Yet, a review of the existing literature
reveals that the problem of controlling and synchronizing complex networks subject to input
nonlinearity has not been carefully studied before.

In this paper, we will focus on the synchronization problem of two coupled networks
with the drive–response (or unidirectional) coupling, in which one network does not receive
any information from the other [27]. A variable structure control strategy, which is an
effective method to synchronize two chaotic systems [28–32], is proposed to realize the global
exponential synchronization of the drive–response networks subject to input nonlinearity. It is
assumed, in this paper, that the nonlinear part of each individual node in the network is bounded
and satisfies the Lipschitz condition. Obviously, many chaotic systems and Lur’e systems
satisfy these conditions. And throughout this paper, for x ∈ Rn, the notation ‖x‖ = (xT x)

1
2

denotes the Euclidean norm of vector x.
The remainder of the paper is organized as follows. In section 2, the synchronization

problem of the drive–response network with the existence of input nonlinearity is formulated.
In section 3, a proportional–integral (PI) switching surface, which means that the switching
function is composed of the proportional and integral terms, is first formulated to simplify the
task of determining the performance of the closed-loop error system in sliding motion. Then,
a decentralized controller is designed, which is robust to the input nonlinearity and guarantees
the global synchronization of the drive–response network. In section 4, numerical simulations
are presented to demonstrate the effectiveness of the proposed controlled synchronization
scheme. The paper is concluded by section 5.

2. Problem formulation

For two unidirectionally coupled complex dynamical networks, the network which does not
receive any information from the other is called the drive network, while the other one is called
the response network. Then, the drive network can be described as

ẋi (t) = Axi(t) + f (xi(t)) + θ

N∑
k=1

dik�xk(t), i = 1, 2, . . . , N, (1)
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where xi(t) = [xi1(t), xi2(t), . . . , xin(t)]T ∈ Rn is the n-dimensional state vector of node
i, A ∈ Rn×n and f (xi(t)) = [f 1(xi(t)), . . . , f

n(xi(t))]T represent the linear part which can be
zero and nonlinear part of the system dynamics of each individual node, respectively, constant
θ > 0 is the coupling strength, � ∈ Rn×n is the inner linking matrix, D = (dik) ∈ RN×N is
the coupling matrix representing the coupling configuration of the network. It is assumed that
D is irreducible, with zero row-sum and not necessary to be symmetric.

Considering the unidirectional coupling and the input nonlinearity, the response network
can be given by

żi (t) = Azi(t) + f (zi(t)) + θ

N∑
k=1

dik�zk(t) + �i(ui(t)), i = 1, 2, . . . , N, (2)

where zi(t) ∈ Rn is the state vector of node i of the response network, A, f (·), θ, � and D are
the same as given in (1). The term

�i(ui(t)) = [ϕi(ui1(t)), . . . , ϕi(uin(t))]
T , i = 1, 2, . . . , N,

represents the nonlinear input of node i. Here, ui(t) = [ui1(t), . . . , uin(t)]T represents the
controller needed to be designed for node i, where uij (t), j = 1, . . . , n, is the control item to
be added to the j th function of node i; ϕi : R → R denotes some given nonlinear constraint
on each uij . It is also assumed that ϕi is a continuous nonlinear function satisfying ϕi(0) = 0
and the following sector conditions:

µi,1u
2
ij (t) � uij (t)ϕi(uij (t)) � µi,2u

2
ij (t), j = 1, 2, . . . , n, (3)

where µi,1 and µi,2, i = 1, 2, . . . , N , are nonzero positive constants.
Moreover, the following assumption is made regarding the nonlinear function f :
(H) f : Rn → Rn is bounded and satisfies the Lipschitz condition with a Lipschitz

constant

Li > 0, i.e. ‖f (xi) − f (yi)‖ � Li‖xi − yi‖, for all xi, yi ∈ Rn, i = 1, 2, . . . , N.

The drive–response dynamical network as defined in (1) and (2) is said to achieve
(asymptotical) synchronization if

ei(t) = xi(t) − zi(t) → 0, as t → ∞.

Note that the synchronization error equations of the drive–response network can be written
as

ėi (t) = Aei(t) + (f (ei(t) + zi(t)) − f (zi(t))) + θ

N∑
k=1

dik�ek(t) − �i(ui(t)),

i = 1, 2, . . . , N. (4)

Then, the objective is to design controllers ui ∈ Rn×1, robust to the input nonlinearity ϕi , such
that the synchronization error vector ei(t) satisfies limt→∞ ‖ei(t)‖ = 0 even with different
initial conditions xi(0) and zi(0), i = 1, . . . , N.

3. Sliding mode controller design

From the variable structure control approach, to synchronize a drive–response dynamical
network with nonlinear inputs involves two basic steps: (1) selecting an appropriate switching
surface such that the sliding motion on the sliding manifold is stable and limt→∞ ‖ei(t)‖ = 0;
(2) establishing a robust control law which guarantees the existence of the sliding manifold
si(t) = 0 even in the presence of the input nonlinearity.

3
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Design the PI switching function si(t) as

si(t) = σiei(t) −
∫ t

0
σi(A + K)ei(τ ) dτ, i = 1, 2, . . . , N, (5)

where si(t) ∈ R,K ∈ Rn×n and σi ∈ R1×n, with σik � 0 designable, i = 1, . . . , N, k =
1, . . . , n. Then, the equivalent control can be obtained from ṡi (t) = 0, which is a necessary
condition for the state trajectory to stay on the switching surface si(t) = 0. Therefore, when
the error system (4) operates in the sliding mode, the following differentiating equations need
to be satisfied [33]:

ṡi (t) = σi(−Kei(t) + (f (ei(t) + zi(t)) − f (zi(t))) + θ

N∑
k=1

dik�ek(t) − �i(ui(t))) = 0,

i = 1, 2, . . . , N.

Solving the above equations, one obtains the equivalent control �ieq(ui(t)) as

�ieq(ui(t)) = −Kei(t) + (f (ei(t) + zi(t)) − f (zi(t))) + θ

N∑
k=1

dik�ek(t). (6)

Substituting �ieq(ui(t)) into (4) shows that the error equations on the sliding surface are
determined by

ėi (t) = (A + K)ei(t), i = 1, 2, . . . , N. (7)

Obviously, a feedback gain matrix K can be selected such that all eigenvalues of A + K have
negative real parts in order to guarantee the stability of (7). More significantly, the eigenvalues
of A + K are related to the exponential convergence speed of the error system in the sliding
mode.

Note that the equivalent control �ieq(ui(t)) given in (6) is only a mathematically derived
expression for the analysis of a sliding motion, but not a real control law being generated in
practical systems. The equivalent control generates an ideal sliding motion on the switching
surface, while a simple real variable structure controller to be designed will generate a trajectory
close to the ideal sliding motion around the switching surface.

In what follows, a practical sliding mode control scheme is designed to drive the error
system trajectories onto the sliding surface. The proposed control law uij (t) is as follows:

uij (t) = γi(Gi‖ei(t)‖ + Fi)
si(t)

|si(t)| + δ
, γi >

1

µi,1 · (∑n
k=1 σik

) ,

i = 1, 2, . . . , N, j = 1, 2, . . . , n,

(8)

where Gi = (‖σiK‖ + Li‖σi‖), Fi = ∑N
k=1 θ · |dik| · ‖σi�‖ · ‖ek(t)‖, µi,1 are given by (3),

and δ is a sufficiently small designable constant used to eliminate possible chattering.

Theorem 1. For the drive–response complex network given in (1) and (2), where function
f (·) satisfies assumption (H), if the control input uij (t) is defined by (8), then the trajectory
of the error equation (4) converges to the sliding manifold si(t) = 0, i = 1, 2, . . . , N.

4
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Proof. Take a Lyapunov function V (t) = ∑N
i=1 |si(t)|. Its time derivative is given by

V̇ (t) =
N∑

i=1

si(t)ṡi(t)

|si(t)|

=
N∑

i=1

si(t)

|si(t)| · [σi(−Kei(t) + (f (ei(t) + zi(t)) − f (zi(t)))

+ θ

N∑
k=1

dik�ek(t) − �i(ui(t)))]. (9)

The first three terms on the right-hand side of (9) satisfy the following three inequalities,
respectively:

N∑
i=1

−si(t)σiKei(t)

|si(t)| �
N∑

i=1

‖σiK‖ · ‖ei(t)‖, (10)

N∑
i=1

si(t)σi(f (ei(t) + zi(t)) − f (zi(t)))

|si(t)| �
N∑

i=1

|σi(f (ei(t) + zi(t)) − f (zi(t)))|

�
N∑

i=1

Li‖σi‖ · ‖ei(t)‖ (11)

and
N∑

i=1

si(t)σiθ
∑N

k=1 dik�ek(t)

|si(t)| �
N∑

i=1

∣∣∣∣∣σiθ

N∑
k=1

dik�ek(t)

∣∣∣∣∣ �
N∑

i=1

N∑
k=1

θ |dik| · ‖σi�‖ · ‖ek(t)‖.

(12)

Consider the last term on the right-hand side of (9). It follows from (3) and (8) that

uij (t)ϕi(uij (t)) = γi(Gi‖ei(t)‖ + Fi)
si(t)ϕi(uij (t))

|si(t)| + δ

� µi,1(γi(Gi‖ei(t)‖ + Fi))
2 s2

i (t)

(|si(t)| + δ)2
. (13)

By (13), one has

si(t)ϕi(uij (t)) � µi,1γi(Gi‖ei(t)‖ + Fi)
s2
i (t)

(|si(t)| + δ)
. (14)

Furthermore, multiplying σij on both sides of inequality (14) and summing up upon index j

from 1 to n, one obtains

−
N∑

i=1

si(t)σi�i(ui(t))

|si(t)| � −
N∑

i=1

n∑
k=1

σikµi,1γi(Gi‖ei(t)‖ + Fi)
s2
i (t)

|si(t)|(|si(t)| + δ)
. (15)

Substituting (10)–(12) and (15) into (9), one has

V̇ (t) �
N∑

i=1

(Gi‖ei(t)‖ + Fi) −
N∑

i=1

n∑
k=1

σikµi,1γi(Gi‖ei(t)‖ + Fi)
|si(t)|

(|si(t)| + δ)

�
N∑

i=1

(
1 − µi,1γi

|si(t)|
(|si(t)| + δ)

n∑
k=1

σik

)
(Gi‖ei(t)‖ + Fi). (16)

5
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Since
(
1 − µi,1γi

∑n
k=1 σik

)
< 0 and δ is a designable parameter which can be chosen

sufficiently small, inequality (16) implies V̇ (t) < 0. Therefore, V (t) converges to zero, i.e.
si(t) → 0, i = 1, 2, . . . , N . This completes the proof of the theorem. �

Theorem 2. The error equation (4), in which function f (·) satisfies assumption (H), is
asymptotically stable about zero if the control input uij (t) is defined by (8).

Proof. When the error equation (4) is driven by the control input uij (t) given in (8), the
trajectory of the error equation converges to the sliding manifold si(t) = 0, i = 1, 2, . . . , N ,
by theorem 1. Thus, the equivalent control function �ieq(ui(t)) in the sliding manifold can be
obtained, as shown in (6). Substituting �ieq(ui(t)) into (4), the equivalent error equation in the
sliding manifold is obtained as shown in (7). As discussed above, the values of K are specified
such that (A+K) is stable in order to guarantee the asymptotical stability of (7). Consequently,
the asymptotical stability of the error equation in (4) is ensured. The theorem is thus
proved. �

Remark 1. In the proof of the stability of the error system (4), no linearizing technique
is performed. Thus the above proposed control scheme theoretically guarantees the global
synchronization of the drive–response network.

Remark 2. Note that there is no demand for the coupling matrix D to be symmetric in theorems
of this section. Thus the proposed control scheme is applicable to the cases of weighted or
oriented networks.

4. Numerical simulation

In order to show the effectiveness of the controller designed in section 3, numerical simulations
are performed in this section by using the fourth-order Runge–Kutta method with time step
size t = 0.0025.

Take Chua’s oscillator as the individual node of the drive–response network. In the
dimensionless form, Chua’s oscillator is described by [34]⎧⎨

⎩
ẋ1 = α(−x1 + x2 − g(x1)),

ẋ2 = x1 − x2 + x3,

ẋ3 = −βx2 − ωx3,

(17)

where g(·) is a piecewise linear function:

g(x1) = m1x1 + 1
2 (m2 − m1)(|x1 + 1| − |x1 − 1|).

Take parameters α = 9, β = 14, ω = 0.01,m1 = −0.714 and m2 = −1.14, so that Chua’s
oscillator (17) generates a double-scroll chaotic attractor.

Suppose that both the drive and response networks are regular networks consisting of five
Chua’s oscillators. The drive network is described by

ẋi (t) = Axi(t) + f (xi(t)) + θ

5∑
k=1

dik�xk(t), i = 1, 2, . . . , 5, (18)

where

xi(t) =
⎡
⎣xi1(t)

xi2(t)

xi3(t)

⎤
⎦ , A =

⎡
⎣−α − αm1 α 0

1 −1 1
0 −β −ω

⎤
⎦ , f (xi) =

⎡
⎣f (xi1)

0
0

⎤
⎦ ,

6
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Figure 1. Evolutions of the state variables of two uncoupled networks with the same global
coupling configuration and coupling strength.

� = diag{1, 1, 1} and f (xi1) = − 1
2α(m2 − m1)(|xi1 + 1| − |xi1 − 1|). Accordingly, the

response network can be described as

żi (t) = Azi(t) + f (zi(t)) + θ

5∑
k=1

dik�zk(t) + �i(ui(t)), i = 1, 2, . . . , 5, (19)

where �i(ui(t)) = [ϕi(ui1(t)), ϕi(ui2(t)), ϕi(ui3(t))]T .
If �i(ui(t)) = 0 in (19), i.e., without the control input, then because of the sensitive

dependence on the initial conditions of chaotic systems, networks (18) and (19) will not
synchronize in general. This phenomenon is shown in figure 1, where the green solid curves
and the red dashed ones represent the trajectories of networks (18) and (19), respectively. The
initial conditions of these two networks are random but different.

It can be verified that all the conditions required by theorems of section 3 are satisfied.
Therefore, to achieve global synchronization, a control law as proposed in section 3 can be
designed. Set ϕi(uij (t)), j = 1, 2, 3, be the same for node i, and denote by ui the control
input to node i. Suppose that the input nonlinearity is a periodic excitation modulated to the
control input: ϕi(uij (t)) = uij (t)[0.2 sin(uij (t)) + 0.9]. Then, parameters µi,1 and µi,2 of
(3) can be chosen as µi,1 = 0.7 and µi,2 = 1.1. It can be seen from the form of f (xi1) that
assumption (H) is satisfied with Li = 4. Choose σi = [2, 0, 0] and γi = 0.75 > 1

µi,1(
∑n

k=1 σik)
.

Assign the eigenvalues of (A + K) to be (−1,−2,−3), so a suitable K is determined as

K =
⎡
⎣1.574 −9 0

−1 −1 −1
0 14 −2.99

⎤
⎦ .

Let the switching function si(t) be in the form of (5) and choose δ = 0.1. Then, the control
law uij (t) is designed according to (8), as follows:

uij (t) = 0.75[Gi‖ei(t)‖ +
N∑

k=1

2θ |dik| · ‖ek(t)‖]
si(t)

|si(t)| + δ
, i = 1, . . . , 5,

j = 1, . . . , 3. (20)

Figure 2 shows the simulation results of the drive–response network with the global coupling
configurations. The evolutions of state variables xi and zi are shown in figures 2(a)–(c) with
the green solid curves and the red dashed ones denoting the trajectories of the drive network
(18) and the response network (19), respectively. The evolutions of the corresponding error

7
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Figure 2. Synchronization of the drive–response network with the global coupling configuration
and coupling strength θ = 1.5. (a)–(c) Evolution of state variables xi and zi , (d) synchronization
error states ei , (e) time responses of si and (f ) time responses of control inputs.

states are shown in figure 2(d). Figure 2(e) illustrates the time responses of si under the
proposed control (20). Figure 2(f ) shows the control inputs ui, i = 1, 2, . . . , 5.

From figure 2(c), one can clearly see that the synchronization of the drive–response
network is slower than the internal synchronization of their own, respectively.

Remark 3. The initial conditions of networks (18) and (19) in figure 2 are the same as those
in figure 1, where the differences of initial conditions of networks (18) and (19) are small.
When the differences of these initial conditions are large, the drive–response network can still
achieve synchronization under condition (20) through appropriate adjustment of parameters
δ and time step size t. This is theoretically guaranteed by the global nature of the proposed
control scheme. The simulations are similar as given in figure 2 and thus omitted.

Similarly, figure 3 shows the synchronization of the drive–response network with the
star-shaped configuration. Both the drive network and the response network consist of five
nodes; the color curve denotation and parameters are the same as those given above.

It can be seen from figure 3 that the synchronization of the star-shaped coupling network
is slower than that of the global coupling network (see figure 2) when the same coupling
strength is used.

Note that, the synchronization of the drive–response network does not depend on the
internal synchronization of the drive network itself. Figure 4 shows the simulation results of
the drive–response network (each with five nodes) with the global coupling configuration and
coupling strength θ = 0.05.

From figures 4(a)–(c), it can be seen that, although the drive network (18) is not internally
synchronous because of the small coupling strength θ = 0.05, the state variables of the

8
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Figure 3. Synchronization of the drive–response network with the star-shaped coupling
configuration and coupling strength θ = 1.5. (a)–(c) Evolution of state variables xi and zi ,
(d) synchronization error states ei , (e) time responses of si and (f ) time responses of control
inputs.
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Figure 4. Synchronization of the drive–response network with the global coupling configuration
and coupling strength θ = 0.05. (a)–(c) Evolution of state variables xi and zi , (d) synchronization
error states ei , (e) time responses of si and (f ) time responses of control inputs.
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Figure 5. Synchronization of the drive–response network with the non-regularly coupling
configuration and coupling strength θ = 4.5. (a)–(c) Evolution of state variables xi and zi ,
(d) synchronization error states ei , (e) time responses of si and (f ) time responses of control
inputs.

response network (19) still tend to those of the drive network. Figure 4(d) displaces the
evolutions of the error variables ei(t), showing ei(t) → 0, as t → ∞.

To further verify the theorems given in section 3, consider non-regularly coupled networks
consisting of 20 nodes, generated by following the procedure of the well-known BA model.
Figure 5 shows the synchronization of the drive–response network.

Figure 5 shows the effectiveness of the designed controller (8) for some cases where the
node number of the drive–response network increases. Note that the controller is robust to
the nonlinear inputs, the only constraint on which is given by (3). Furthermore, the chattering
effect has been eliminated as a result of the continuity of the controller (8).

5. Conclusions

In this paper, a novel decentralized control scheme for global exponential synchronization of
drive–response complex networks is derived. The feedback controller uses only individual
node’s information, without the need of communications among different nodes over the
network. Further, due to the merit of the employed proportional–integral sliding mode control
method, the control strategy is robust to input nonlinearity under certain conditions. The
effectiveness and feasibility of the control strategy is confirmed and demonstrated by numerical
simulations on chaotic drive–response networks with various coupling configurations. The
approach developed in this paper may be further applied to complex networks synchronization
subject to random inputs in the future. And research for the cases when the node numbers or
coupling configurations of the drive and response networks are different seems promising and
deserves further efforts.
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